Contrapositive 反證
if φ ⇒ ψ , then ¬ψ ⇒ ¬φ
$∃x$A(x)] = $∀x$[¬A(x)] ?
Assignment 7
- Prove or disprove the statement “All birds can fly.”
birds b, fly birds are F(b)
Assume $∀b$ ⇒ F(b) True.
$∃o$, there are some birds, such as ostrich o, it can not fly.
$∀b$[$∃o$$(b=o)$ ⇒ ¬F(b)]
so not all birds could fly, $∀b$ ⇒ F(b) False.
Prove or disprove the claim (∀x, y ∈ R)[(x − y)2 > 0]. Assume (∀x, y ∈ R)[$(x − y)^2$ > 0] is True.
Prove that between any two unequal rationals there is a third rational.
Let (x, y) ∈ Q rationals, (x < y), x= q/s, y=r/t
and (q, r, s, t )∈ Z integers.
then (x+y)/2 = (qt+sr)/2st ∈ Q
x < (x+y)/2 < y
- Explain why proving φ ⇒ ψ and (¬φ) ⇒ (¬ψ) establishes the truth of φ ⇔ ψ.
if φ ⇒ ψ , then ¬ψ ⇒ ¬φ
if (¬φ) ⇒ (¬ψ), then ψ ⇒ φ
so (φ ⇒ ψ)∧(ψ ⇒ φ)
so φ ⇔ ψ.
- $\sqrt{3}$ is irrational.
$\sqrt{3}$ = x/y rational, (x, y) ∈ Z
y$\sqrt{3}$ = x,
- converse the conditional statements.
(a) If the Dollar falls, the Yuan will rise. F(d) ⇒ ¬F(y)
¬F(y) ⇒ F(d)
(b) If x < y then −y < −x. (For x,y real numbers.)
(x < y) ⇒ (−y < −x)
(−y < −x) ⇒ (x < y)
(c) If two triangles are congruent they have the same area.
If two triangles have the same area, they are congruent.
(d) The quadratic equation $ax^2$ + bx + c = 0 has a solution whenever $b^2$ ≥ 4ac. (Where a, b, c, x denote real numbers and a ≠ 0.)
$ax^2$ + bx + c = 0
set r, q are real numbers
(x+r)(ax+q) =0
$ax^2$ +(q+ra)x + rq = 0
b= q+ra
c = rq
b=q+ ac/q
bq-$q^2$=ac
q(q+ra)-$q^2$=ac
qra=ac
whenever $b^2$ ≥ 4ac
$(q+ra)^2$ ≥ 4qra
$q^2$ + 2qra + $(ra)^2$ ≥ 4qra
$q^2$ - 2qra + $(ra)^2$ ≥ 0
$(q-ra)^2$ ≥ 0
this is truth, so the statement is true.
- (e) Let ABCD be a quadrilateral. If the opposite sides of ABCD are pairwise equal, then the
opposite angles are pairwise equal.
- (f) Let ABCD be a quadrilateral. If all four sides of ABCD are equal, then all four angles are equal.
(g) If n is not divisible by 3 then $n^2$ + 5 is divisible by 3. (For n a natural number.)
x are integers.
n=3x
( $n^2$ + 5 ) ≠ 3x
¬(n=3x) ⇒ [( $n^2$ + 5 ) = 3x] ¬ [( $n^2$ + 5 ) = 3x] ⇒ (n=3x)
($n^2$ -3x + 5 ≠ 0) ⇒ (n=3x)
($n^2$ - n + 5 ≠ 0)
$(n - 1/2)^2$ + 19/4 ≠ 0, this is true
8. Let r, s be irrationals, which is is necessarily irrational?
a. r+3
Assume r+3 = q/p rational, (q, p) ∈ Z integers.
so r= q/p- 3, it is rational also, it is converse to the condition r is irrational.
so the Assume r+3 is rational is False.
- 5r
the save as above.
r= q/5p
- r+s
r+s = q/p
r= (q-ps)/s
rs
√r
$r^s$
Let m and n be integers. Prove that:
(a) If m and n are even, then m+n is even.
set x, y integer
m= 2y
n= 2x
m+n = 2(x+y)
(b) If m and n are even, then mn is divisible by 4. m= 2x, n=2y, mn = 4xy
mn/4=xy
(c) If m and n are odd, then m+n is even.
m= 2x+1
n= 2y+1
m+n=2(x+y+1)
(d) If one of m,n is even and the other is odd, then m+n is odd. m= 2x+1
n= 2y
m+n=2(x+y)+1
(e) If one of m, n is even and the other is odd, then mn is even.
mn=2y(2x+1)
Quiz
- valid proof that mn is odd iff m and n are odd?
mn=2x+1
m=(2x+1)/n
- 16
0+4+3+3+2+0
Archimedes bath
Set cold faucet fill water rate as C , hot faucet H, both faucet will take time hr.
0.5 C = 1 H
(C+H)hr = 0.5 C = 1 H